概说
遇到了高级、困难级的数独谜题,使得唯一候选数法和 隐性唯一候选数法黔驴技穷的时候,就是各种删减法上场的时机了。在各种的删减法中,哪一个要先用
是随个人之喜好的,并无限制。本页介绍的当然就要以隐性数对删减法优先??!
<图 1>
请看<图 1>的上右九宫格,数字 8、9 都只出现在(2, 8)和(2, 9)这两个宫格的候选数中;这时隐性数对删减法
的条件已成立了!这表示上右九宫格的数字 8 和 9 将只能填到这两个宫格中,而且:如果数字 8 将填入(2, 8), 那么(2,
9)就一定要填入数字 9;反之,如果数字 9 将填入(2, 8),那么(2, 9)就一定要填入数字 8; 不论哪一个状况出现,(2, 8)和(2,
9)这两个宫格的候选数中若还有其他数字,全部是多余无用的,因为这 两个宫格若填入数字 8、9 以外的数字,那么上右九宫格的数字 8 或 9
就将无处可填了。候选数的意义是 可能填入该宫格的数字,而这两个数字以外的数字已不可能再用来填入本宫格中了,所以可以毫不考虑的把 它们删减掉。当(2,
8)和(2, 9)这两个宫格的候选数都安全的删减成数字 8、9 之后,(2, 5)出现了列隐性 唯一候选数 2
,于是可用隐性唯一候选数法来填入下一个解了。
整理一下: 当某个数对仅出现在某个九宫格的某两个宫格候选数中时,就可以把这两个宫格的候选数删减成该数对。
同理,当某个数对仅出现在某列的某两个宫格候选数中时,就可以把这两个宫格的候选数删减成该数对。
当然,当某个数对仅出现在某行的某两个宫格候选数中时,就可以把这两个宫格的候选数删减成该数对。
利用“找出某个数对仅出现在某行、某列或某一个九宫格的某两个宫格候选数中的情形,进而将这两个
宫格的候选数删减成该数对”的方法就叫做隐性数对删减法(Hidden Pairs)。
当隐性数对删减法完成后,通常还可引发数对删减法;以<图 1>为例,当(2, 8)和(2, 9)这两个宫格的候选数
都安全的删减成数字 8、9 之后,还可利用数对删减法把 (2, 1)、(2, 2)、(2, 3) 这三个c格候选数中的数字 8 删减掉。
隐性数对删减法示例
隐性数对删减法一共有 3 种状况:第一种发生在行、第二种是发生在列、第三种则发生在九宫格。<图 1> 就是
发生在九宫格的例子了,其他的情况举例如下:
<图 2>
<图 2> 是隐性数对删减发生在行的例子:图中第 2 行的数对 4、6 只出现在 (3, 2)及(9, 2) 这两个宫格
的候选数中,所以可以将(3, 2)及(9, 2)的候选数安全的删减成数对 4、6;而经此一删,(3, 3) 宫格出现 了列隐性唯一候选数 1
啦!
<图 3>
<图 3> 是隐性数对删减发生在列的例子:图中第 7 列的数对 4、7 只出现在 (7, 1)及(7, 8) 这两个宫格
的候选数中,所以可以将(7, 1)及(7, 8)的候选数安全的删减成数对 4、7;而经此一删,(8, 1) 宫格出现 了行隐性唯一候选数 2
啦!
|